F1TENTH - Learn
latest

Getting Started

  • Start Here!

Overview

  • Introduction
  • Syllabus

Modules

  • Module A: Foundations of F1TENTH
    • Lecture 1 - Introduction to F1TENTH Autonomous Vehicle
      • Tutorial 1: Using the F1TENTH Simulator
    • Lecture 2 - Automatic Emergency Braking
      • Tutorial 2 - Working with the F1TENTH Simulator
    • Lecture 3 - Rigid Body Transformation
    • Lecture 4 - Laplace Domain Dynamics & PID
  • Module B: Reactive Methods
    • Lecture 5 - Car Building and VESC Tuning
    • Lecture 6 - Reactive Methods: Follow the Gap & Variants
    • Lecture 7 - Race Prep
    • Lecture 8 - Race 1
  • Module C: Mapping & Localization
    • Lecture 9 - Scan Matching I
    • Lecture 10 - Scan Matching II
    • Lecture 11 - Particle Filters
    • Lecture 12 - Modern SLAM: Cartographer
  • Module D: Planning
    • Lecture 13 - Pure Pursuit
    • Lecture 14 - Rapidly-exploring Random Tree (RRT)
    • Lecture 15 - Race Prep
    • Lecture 16 - Race 2
  • Module E: Vision
    • Lecture 17 - Detection and Pose Estimation
    • Lecture 18 - Extending Single View and YOLO
    • Lecture 19 - Project Proposal
  • Module F: Special Topics
    • Lecture 20 - Raceline Optimization
    • Lecture 21 - Model Predictive Control
    • Lectures 22 - Moral Decision Making
    • Lectures 23-25 - Special Topics
  • Module G: F1TENTH Grand Prix!!
    • Lecture 26 - Project Demos
    • Lecture 27 - Race Prep
    • Lecture 28 - Race 3: F1TENTH Grand Prix!
  • Material Downloads

Assignments

  • Labs
    • Lab 1 - Introduction to ROS
    • Lab 2 - Automatic Emergency Braking
    • Lab 3 - Wall Following
    • Lab 4 - Follow the Gap
    • Lab 5 - Scan Matching
    • Lab 6 - Pure Pursuit
    • Lab 7 - Motion Planning (RRT)
    • Lab 8 - Perception and Planning
    • Lab 9 - Robot Ethics
    • Solutions
  • Races
    • Race 1
    • Race 2
    • Race 3
  • Final Project
  • Grading Rubrics
    • Labs & Final Project
    • Races
      • Race 1 and Race 2
      • Race 3

Support

  • Logos
  • Contact
  • Acknowledgements
F1TENTH - Learn
  • »
  • Module C: Mapping & Localization »
  • Lecture 11 - Particle Filters
  • Edit on GitHub

Lecture 11 - Particle Filters¶

Overview:

This is the third installment in the Localization lectures. Given inputs of laser scan data, a control input, and a map, we want to output a pose and some “particles”. This lecture is divided into three parts: 1) going over the particle filter localization algorithm, 2) tuning the alrogithm, and 3) additional resources and a hands on tutorial. Expect a dense but extremely informative lecture.

Topics Covered:
  • Particle filters

Slides:

Links to additional resources:
  • S. Thrun, W. Burgard. “Probabilistic Robotics.” Chapter 4 and Chapter 8.

  • S. Thrun. “Artificial Intelligence for Robotics, Lesson 3.” Udacity.

  • S. Thrun, D. Fox, W. Burgard and F. Dellaert. “Robust Monte Carlo Localization for Mobile Robots.”​ Artificial Intelligence Journal. 2001.

  • D. Fox, W. Burgard, and S. Thrun. “Markov localization for mobile robots in dynamic environments,” ​ Journal of Artificial Intelligence Research ​ , vol. 11, pp. 391427, 1999.

  • D. Fox. “KLD-sampling: Adaptive particle filters,” Advances in Neural Information Processing Systems 14 (NIPS), Cambridge, MA, 2002. MIT Press.

  • D. Bagnell “Particle Filters: The Good, The Bad, The Ugly”

  • C. Walsh, S. Karaman. “CDDT: Fast Approximate 2D Ray Casting for Accelerated Localization.” Arxiv, 2017.

Next Previous

Creative Commons License Content on this site is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Last updated on Sep 24, 2023.

Read the Docs v: latest
Versions
latest
stable
Downloads
On Read the Docs
Project Home
Builds